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Background

• Each year, over a million high school students take the 
SAT.  Nearly one-half of them take the test more than 
once.

• SAT score change analyses have focused on tracking 
average score differences of student cohorts from year 
to year. 

• It is also important to examine growth trajectories of 

students’ performance using repeated measures data.
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Growth Models

Two types of the models have gained prominent use:

The multilevel growth models

• Assume a single population growth model

• Allow variation across individuals in the growth 
parameters

The growth mixture models 

• Allow for different subpopulation growth trajectories

• Estimate random effects for within-class variation

• A more flexible analysis framework. 
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Purpose of the Study

• The study aimed to explore the growth 
trajectory of SAT Reading scores, examine the 
amount of variation across students, and the 
influence of demographics on the growth 
parameters. 

• In addition, the study aimed to explore whether 
there exists latent classes of growth that can be 
described by different growth trajectories.
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Data (1)

• A sample of 3000 students from the 2007 college 
bound seniors who took SAT at least three times.

• Stratified sampling using target proportions of gender 
and ethnic groups based on the cohort.

• 84.4% of students in the sample took the test 3 times, 
12% took the test 4 times, and 3.6% took the test 5 to 
10 times. The ages of students taking each test ranged 
from 14.6 to 20.8 years old. 

• The students had varying number of test scores and 
varying spacing of test occasions.
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Data (2)

• Computed each student’s actual age (to the nearest 
month) when taking the test each time, as temporal 
indicator for each test score. 

• Gender and several ethnic characteristics were dummy 
coded and used as covariates in modeling growth: 

Gender (1=Male, 0=Female)
White (1=White, 0=not White)
Black (1=Black, 0=not Black)
Asian (1=Asian, 0=not Asian)
Hispanic (1=Hispanic, 0=not Hispanic)
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Analyses (1)

Unconditional linear growth model:

Level-1: 

Level-2: 
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Analyses (2)
Conditional linear growth model:

Level-1: 

Level-2:

0 1 ( )ij j j ij ijY TIME r   

α0j = β00 + β01x1j + β02x2j + … + β0nxnj + u0j 

α1j = β10 + β11x1j + β12x2j + … + β1nxnj  + u1j  
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Analyses (3)

The Growth Mixture Model (GMM):

αc0j = βc00 + βc01x1j + βc02x2j + … + βc0nxnj + uc0j
αc1j = βc10 + βc11x1j + βc12x2j + … + βc1nxnj + uc1j

|( ) 0 1 ( )
jij C c cj cj ij icjY TIME r        

αc0j = βc00 + βc01x1j + βc02x2j + … + βc0nxnj + uc0j 

αc1j = βc10 + βc11x1j + βc12x2j + … + βc1nxnj  + uc1j  
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Parameter estimates for the traditional growth models

 

Random VarianceEstimate SE Pr Estimate SE Pr Estimate SE Pr

Intercept 8066.60 542.14 <.0001 8051.07 310.61 <.0001 7621.38 299.05 <.0001

time 176.29 54.90 0.0007 174.87 30.33 <.0001 156.82 29.20 <.0001

Residual 1220.22 23.08 <.0001 1220.19 21.94 <.0001 1216.77 21.84 <.0001

Fixed Effects

Intercept 430.59 3.06 <.0001 433.70 4.23 <.0001 408.39 7.52 <.0001

time 28.77 0.99 <.0001 29.66 1.39 <.0001 32.15 2.48 <.0001

gender -7.08 6.13 0.2483

time*gender -1.75 1.99 0.3788

black -11.27 11.95 0.3457

white 43.27 8.57 <.0001

asian 1.26 12.29 0.9185

hispanic 4.00 12.46 0.7482

time*black -13.19 3.90 0.0007

time*white -5.25 2.82 0.0624

time*asian 9.97 3.99 0.0126

time*hispanic -3.83 4.08 0.3480

Model-1 Model-2 Model-3
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Comparison of class formation for the Growth 

Mixture Model

 
Loglikelihood df AIC BIC

1 class -41402.392 16 82836.8 82930.172

2 class -41374.677 25 82799.4 82945.272

3 class -41409.322 34 82886.6 83085.094
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Logistic regression odds ratio for 

Class 1 on covariates

 
Covariate Odds ratio

Gender 1.4

White 32.4

Black 0.1

Asian 3.6

Hispanic 0.1
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Frequency and percentage of students in 

each latent class by ethnic group 
 

N % against class % against group N % against class % against group

1 1414 78% 100% 6 1% 0%

0 396 22% 36% 716 99% 64%

   

1 7 0% 3% 250 35% 97%

0 1803 100% 79% 472 65% 21%

   

1 207 11% 86% 35 5% 14%

0 1603 89% 70% 687 95% 30%

   

1 7 0% 2% 288 40% 98%

0 1803 100% 81% 434 60% 19%

Class 2

White

Black

Asian

Hispanic

Ethnic Group

Class 1
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Parameter estimates from the 2-class 

Growth Mixture Model 
 

Estimate P-Value

Class 1

Intercept 503.0 0.000

Slope 35.8 0.000

Intercept 6709.6 0.000

Class 2

Intercept 394.3 0.000

Slope 23.0 0.000

Intercept 6509.2 0.000

Covariate effects

Intercept

Gender 16.8 0.527

White -27.7 0.019

Black -1.5 0.929

Asian 45.0 0.004

Hispanic 19.3 0.168

Slope

Gender -0.6 0.952

White -11.4 0.000

Black -4.9 0.000

Asian -6.3 0.000

Hispanic 4.1 0.000

Residual vriances

Residual vriances
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Summary of results

• Large variability in intercept and slope parameters among students. 

• Gender did not account for much variation in growth parameters. 

• Ethnicity accounted for a portion of variation in intercept and slope. 
There was significant intercept effect for White and significant 
slope effect for Black. 

• Growth Mixture Modeling revealed 2 latent subpopulations of 
different growth trajectories.   Class 1 primarily consists of White 
and Asian, with higher average intercept and higher slope than 
Class 2 which primarily consists of Black and Hispanic students. 

• The GMM results identified a significant intercept effect for Asian, 
and significant slope effects for White, Black, Asian, and Hispanic. 
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Discussion

• Results and interpretations were conditioned on the 
2007 cohort data. Need cross-validation with data form 
other cohort year. 

• The modeling approach and selection of covariates were 
exploratory in nature. More in-depth examinations are 
needed.

• Future studies need to include other predictors, 
especially variables related to student academic 
background. Variables at school level can also be 
explored.

• Future studies can explore a outcome variable (e.g., the 
first year GPA in college) in the growth mixture model. 


